Search results for "Hilbert spaces"
showing 10 items of 22 documents
Operators on Partial Inner Product Spaces: Towards a Spectral Analysis
2014
Given a LHS (Lattice of Hilbert spaces) $V_J$ and a symmetric operator $A$ in $V_J$, in the sense of partial inner product spaces, we define a generalized resolvent for $A$ and study the corresponding spectral properties. In particular, we examine, with help of the KLMN theorem, the question of generalized eigenvalues associated to points of the continuous (Hilbertian) spectrum. We give some examples, including so-called frame multipliers.
Bessel sequences, Riesz-like bases and operators in Triplets of Hilbert spaces
2016
Riesz-like bases for a triplet of Hilbert spaces are investigated, in connection with an analogous study for more general rigged Hilbert spaces performed in a previous paper. It is shown, in particular, that every \(\omega \)-independent, complete (total) Bessel sequence is a (strict) Riesz-like basis in a convenient triplet of Hilbert spaces. An application to non self-adjoint Schrodinger-type operators is considered. Moreover, some of the simplest operators we can define by them and their dual bases are studied.
Riesz-like bases in rigged Hilbert spaces
2015
The notions of Bessel sequence, Riesz-Fischer sequence and Riesz basis are generalized to a rigged Hilbert space $\D[t] \subset \H \subset \D^\times[t^\times]$. A Riesz-like basis, in particular, is obtained by considering a sequence $\{\xi_n\}\subset \D$ which is mapped by a one-to-one continuous operator $T:\D[t]\to\H[\|\cdot\|]$ into an orthonormal basis of the central Hilbert space $\H$ of the triplet. The operator $T$ is, in general, an unbounded operator in $\H$. If $T$ has a bounded inverse then the rigged Hilbert space is shown to be equivalent to a triplet of Hilbert spaces.
On non-self-adjoint operators defined by Riesz bases in Hilbert and rigged Hilbert spaces
2018
In this paper we discuss some results on non self-adjoint Hamiltonians with real discrete simple spectrum under the assumption that their eigenvectors form Riesz bases of a certain Hilbert space. Also, we exhibit a generalization of those results to the case of rigged Hilbert spaces, and we also consider the problem of the factorization of the aforementioned Hamiltonians in terms of generalized lowering and raising operators.
Finding Electron-Hole Interaction in Quantum Kinetic Framework
2018
The present research has been supported by the Institute of Solid State Physics, the University of Latvia within the framework of National Research Program IMIS2. [Grant numbers VPPI IMIS2, IMIS4].
Generation of Frames
2004
It is well known that, given a generic frame, there exists a unique frame operator which satisfies, together with its adjoint, a double operator inequality. In this paper we start considering the inverse problem, that is how to associate a frame to certain operators satisfying the same kind of inequality. The main motivation of our analysis is the possibility of using frame theory in the discussion of some aspects of the quantum time evolution, both for open and for closed physical systems.
Rigged Hilbert spaces and contractive families of Hilbert spaces
2013
The existence of a rigged Hilbert space whose extreme spaces are, respectively, the projective and the inductive limit of a directed contractive family of Hilbert spaces is investigated. It is proved that, when it exists, this rigged Hilbert space is the same as the canonical rigged Hilbert space associated to a family of closable operators in the central Hilbert space.
Rolle's Theorem for Polynomials of Degree Four in a Hilbert Space
2002
AbstractIn an infinite-dimensional real Hilbert space, we introduce a class of fourth-degree polynomials which do not satisfy Rolle's Theorem in the unit ball. Extending what happens in the finite-dimensional case, we show that every fourth-degree polynomial defined by a compact operator satisfies Rolle's Theorem.
The Schur property on projective and injective tensor products
2008
The problem of whether the Schur property is passed from a Banach space to its (symmetric) projective n-fold tensor product is reformu lated in the language of polynomial ideals. As a result, a very closely related question is solved in the negative. It is also proved that the injective tensor product of infrabarrelled locally convex spaces with the Schur property has the Schur property as well.
Distributions Frames and bases
2018
In this paper we will consider, in the abstract setting of rigged Hilbert spaces, distribution valued functions and we will investigate, in particular, conditions for them to constitute a "continuous basis" for the smallest space $\mathcal D$ of a rigged Hilbert space. This analysis requires suitable extensions of familiar notions as those of frame, Riesz basis and orthonormal basis. A motivation for this study comes from the Gel'fand-Maurin theorem which states, under certain conditions, the existence of a family of generalized eigenvectors of an essentially self-adjoint operator on a domain $\mathcal D$ which acts like an orthonormal basis of the Hilbert space $\mathcal H$. The correspond…